Tutorial 8 - Traffic engineering

Gidon Rosalki
2025-12-18

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_networking

1 Introduction to Traffic Engineering

Last tutorial we discussed ways to find the fastest route to a destination. However, we do not necessarily always want
to send all the data through there, since that will increase the traffic, limiting how much information can be sent
that way, resulting in slower transmission. We want to share the transmission across more possible routes in order to
reduce network traffic.

We do not normally touch this, networks usually mostly manage themselves. Routing protocols adapt to changes, in
order to manage traffic. TCP (to be discussed in the future) can identify congestion, and adapt to reduce the traffic
on a network. However, they do not do that as efficiently as we might have originally desired, TCP cannot send data
over a less congested path if one exists.

We want to monitor our resources (like bandwidth) in order to distribute load in ways that will reduce congestion,
delay, and comply with application specific requirements. This can be achieved by fine tuning the routing protocol
parameters, which are for the most part, the weights of the graph. This is not necessarily an easy problem.

2 Modelling networks as linear programs

There are many scenarios where we can model our world using functions. This modelling can help us find solutions
to problems in (hopefully) polynomial, or even linear time. We will return to linear programming, as discussed in
algorithms. The standard form is for a given set of constraints {c;}._,, and constraints

{aij}it,

{bi}?;l

Then we can maximise:

n

max E CiT4
- VAal)

j=1

Subject to Zaijxj <bjie[m]
j=1
z; >0 € [n]

We know from algorithms that every LP problem has another representation, which provides an upper bound for the
original LP, and the solution for one defines the solution for the other (duality theorem):

n
min ciYj
L ; 7Y;
n
Subject to Zaijyi >cj j € [n]
j=1
yi >0 € [m]

We also saw in algorithms the problem of MAX-FLOW, where for a given network, with a source node, and a
destination (sink) node, find the maximum flow between the source and the sink.

We will not be discussing MAX-FLOW here, but rather Multi-Commodity Flow. This is because in a network,
there are normally more than one set of active source, and destination pairs. We call the set of demands the “Demand
Matrix”.

So now we have a set of commodities K where K = {K; = (s;,t;,d;)}.—,, and f; (u,v) which is the flow of the

https://github.com/robomarvin1501/notes_networking

commodity ¢ on the edge (u,v). Note that we allow every commodity to have its own demand (compared to just
maximising the flow). The constraints become

Vi,Yo € V' \ {s,8:} Z fi (u,v) = Z fi (v, w)

u:(u,v)EE w:(v,w)eEE

V(u,v) € E: Z fi (u,v)

u:(u,v)EE
Vi,V (u,v) € E: f; (u,v) >0

We have many things that we can optimise. For example, we can maximise the total amount of sent traffic (i.e.,

maximise Z | fol, where |f,| is the total amount of traffic sent by v). We could also minimise congestion, where we
v

minimise the load on the most congested edge (So minimise max {fe} where f. is the flow along edge e). We could

€

try and fairly allocate the resources, and even more, but those are less interesting to us right now.

So, let us consider the case of maximising the total amount of traffic sent, maximum multi commodity flow, which

we will call Max-MCF. We need to satisfy the capacity constraint, in that no edge can send more than its capacity.

When solving the problem, we can decide how much traffic to send from each of the commodities (nodes).

In MinCong-MCF we aim to minimise the load on the most congested edge. We need to send all the commodities,

but this may possibly exceed capacities. By using MCF we optimised routes from sources to destinations (according

to some optimisation goal). Most times we want to use multiple (shortest) paths between hosts. So far, we assumed

that we route on a single shortest path. This means that our routing mechanisms need to split traffic, which brings

us on to ECMP.

3 ECMP

ECMP is Equal Cost Multi Path. We want routers to route on all shortest paths between a source/destination pair.
Each router keeps a set of next hops along shortest paths to a destination (i.e., the first node from the current node,
on the shortest path to the destination node). Will “split” traffic evenly along those next hops (routers).

3.1 Optimising

We want to set the graphs weights so that ECMP would be the optimal solution, with respect to some optimization
goal. For example: minimising the most congested link but allowing total flow to exceed the link capacity. There are
not always link weights such that ECMP are optimal, but we can create link weights such that ECMP will hopefully
approach the optimal solution. Consider the following graph:

OO O—0O—0

OPT* =<1

OPTecwp = N/2 @ n = #vertices

Here we want to send n units of flow from s to ¢. This can be achieved by sending 1 along their direct link, and
sending n — 1 to the next node. This node can then send 1 along its direct link, and n — 2 to the next node. This can
keep happening until n units have been sent from s to ¢

Finding the optimal weights under the constraints of using ECMP and weights is a problem that is NP-hard. Even
finding an approximation for the min-congestion flow with any constant factor is NP-hard. This is even true for a
single source-destination pair. So instead of solutions, we are left with heuristics. We are not going to learn the
heuristics properly, but will learn the simplest which is equally splitting among the available paths.

So, we need to establish how we know how to split. One method is to simply go over all the next hops from this
node, in a “round robin” fashion. This has the problem that it could lead to a reordering of the packets, due to each
of the hops having a different round trip time. So, we will add the constraint that we want all the packets of the same
flow to have the same path.

3.2 ECMP Hashing

We would like all packets of the same flow to traverse the same path. To do this, we will use modulo N hash, where
N is the number of next hops for the destination. The hash table maps between a flow and the next hop (router).
There exists many hash functions one can use, and in practice, we don’t know which hash functions vendors use.

So, in order to hash, we use information from the packet header. This includes the source IP address, and port
number, destination IP address and port number, and the protocol in use. These comprise the ECMP 5-tuple. This
way, each packet of the same flow will have these same 5 values.

This does have some problems. Multiple “heavy” flows in the network, which share the same link, can result in
poor performance. One could say that one needs to distribute the “heavy” flows differently, but this is difficult, since
it is unclear to define heavy, and to identify it.

4 Questions

4.1 Definitions

Consider the following network

The capacity of each edge is 2. The weight on each edge in OSPF (uses link state) is positive/infinite On each
edge, every sub-flow can be in either direction, and the total flow is the sum of all the sub-flows.
We will create the following notations:

e Max— MCFospr/ecmp is the maximisation problem of the total network flow, when using OSPF and ECMP,
without restricting each flow to a single path

e Max— MCFopr is the maximisation problem of the total network flow without restricting each flow to a single
path, and without restricting us to equal division, any division is possible between nodes that are part of the
shortest path

Similarly:

o MinCong — MCFospr/pcmp is the minimisation problem of the maximal congestion (over an edge), when
using OSPF and ECMP, without restricting each flow to a single path

e MinCong — MCFppr is the minimisation problem of the maximal congestion without restricting each flow to
a single path, and without restricting us to equal division, any division is possible between nodes that are part
of the shortest path

Recall that in both MinCong-MCF problems, all commodities must be sent, even if one surpasses the edge capac-
ities, and in Max-MCF, the solution is restricted such that the edges capacities are not surpassed.

4.2 Question 1

Assume that there are two commodities (source, destination, demand):

(4,C,5)
(C,E,3)

What is the optimal solution of Max — MCFopr?

4.2.1 Solution

The optimal solution is 6, A sends 4 units, and C sends 2. Let us assume by contradiction that there is a better
solution s’ > 6. Let us now consider node C, for whom all the edges are saturated. Since C is in both commodities,
then in s’, the flow on one of the edges connected to C will increase, which violates the capacity constraints.

4.3 Question 2

Is there a feasible assignment of edges weights s.t. the solution to Maxr—MCFospr/pcup yields the optimal solution
from the previous question?

4.3.1 Solution

Such an assignment exists, and is shown below:

So, the packets from A to C will be equally routed through B and D, and packets from C to E will be routed directly.
Solving this optimisation problem will (in this case) then imply the same flows as in the solution to Max — MCFopr

4.4 Question 3

Consider the following commodities:

(B, D,5) (1)
(C,E,3) (2)
(3)

What’s the optimal solution for the MinCong — M CFopr problem in this scenario? Show a flow that achieves
that solution, and explain your answer.

4.4.1 Solution

Let us analyse the maximum load by looking at the cut (V,V \ {B,C}). We will note that all the commodities must
flow through this cut. Therefore, the minimal maximum load is lower bounded by the minimal load on this cut. The

total commodities sun to 8 units, and the cut has 3 edges, with a total capacity of 6 units. Therefore, the minimal

8 4 4
maximum load is 5= 3 So, we want a maximum of = = - = f = 3 for each edge.

c
Here is a possible solution. Firstly, the flow for (B, D, 5):

Now the flow for (C, E, 3):

Resulting in an overall flow of:

4.5 Question 4

Suggest the weights assignment such that the solution to Min—Congospr/ecmp (the maximum load) is 1.5. Explain
your answer. This is for the following commodities:

(B,D,5) (4)
(C,E,3) (5)

4.5.1 Solution

The maximum must be 3, since

f_f_ 15 = f=3
c 2
There, the edges will have the loads:
2.5
(A,B),(A,D),(B,C),(C,D) - (7)

(®)

4.6 Question 5
Is there a feasible assignment of edge weights such that the solution for MinCong — MCFospr/pcmp yields the

4
optimal solution from question 3, which had the maximum load of =7 If there is such an assignment, show it and

explain why it yields the result, and if there is not such an assignment, then explain why.

4.6.1 Solution

There is no such assignment. We will assume by contradiction that such an assignment exists. In ECMP; if a node
routes a flow to multiple neighbours, then the flow is split equally between them. Consider the node B:

5 4
o If B routes all 5 units over one edge, then the load on said edge will be 3 > 3" obviously worse than the optimal

solution in question 3

o If B routes all 5 units over its two edges, then the total outgoing flows from C will be 3 4+ 2.5. Considering C,

the minimal load on its edges will be where it routes over both (C, E) and (C, D), and the load on the edges will

5.4
be T > 3 so once again, worse than the optimal solution from question 3

We may perform a similar analysis starting on node C which shows that C will not send on (C, B), and conclude the
answer.

4.7 Question 6

Now consider a modified version of OSPF/ECMP, in which flows can be unequally divided between neighbours with
shortest paths. Is there now a feasible assignment of edges weights such that the solution for Min —Congospr/ecmp

4
yields the optimal solution from question 3 (maximal load= 3)?

4.7.1 Solution

Such an assignment exists. The idea is to assign weights that will enable such a solution. For example, consider a
possible solution (that yields the optimal maximal load) from question 3:

	Introduction to Traffic Engineering
	Modelling networks as linear programs
	ECMP
	Optimising
	ECMP Hashing

	Questions
	Definitions
	Question 1
	Solution

	Question 2
	Solution

	Question 3
	Solution

	Question 4
	Solution

	Question 5
	Solution

	Question 6
	Solution

