
Tutorial 9 - Reliable Transport Protocols
Gidon Rosalki

2026-01-01

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_networking

1 Reliable Transport
The concept is to provide the upper layer a service abstraction of a reliable channel, where no bits are corrupted or
lost, and all bits are delivered in order. In order for this to hold, we need to make the network reliable, and ensure
reliable communication over an unreliable / noisy channel. This naturally has costs, and other requirements, which
will be discussed.

2 First attempt
In order for the network to be reliable, we could add the feature that when a packet is seen by a switch, we check
that it reaches the next hop without corruptions, and if it is corrupted, then we resend. This has a few questions,
what if 2 switches fail? Where must we buffer packets, and for how long? What is the resultant goodput, throughput,
and packet delay? Since the network is unreliable, the packets may be delayed, lost, or corrupted. We thus need a
mechanism to monitor any of these.

For the purposes of today, we are going to assume that we can always detect errors, that each sender always has
packets to transmit, and packets are received in the order in which they are sent, without bypassing.

3 Stop and Wait
This is split into two sides, the sender, and receiver.
The sender sends a packet, adn starts a timer. It waits for Tout (timeout) units, to receive an ACK / NACK response.
If it receives NACK (not acknowledged), or the timeout is reached, then it resends, and resets the timer. If it receives
ACK, then it sends the next packet, and resets the timeout.
The receiver will send an ACK if it receives a packet, without an error, and NACK (or ignore) if the packet is
corrupted. For our purposes, we will probably ignore NACKs, since it only mildly improves the speeds offered by the
sender, letting the sender reach timeout is just as effective.

This is not quite sufficient, since the receiver cannot distinguish between a new message, and a resent message.
We can try and resolve this, by adding a binary counter in the sent packets.
This is also not sufficient, since now the sender does not know which packet was ACKed. To resolve this, we also add
a binary counter in the ACKs sent by the receiver.

The timer is initialised after sending the last bit of the packet, but we need to decide what is the minimal timeout
Tout needed for this protocol to work. We need to consider:

• Packet siize

• ACK / NACK size

• Transmission rate (bandwidth)

• Distance between stations

• Propagation speed

• Processing time (Tpt) (unless told otherwise, only the receiver can have Tpt > 0)

In order to calculate the timout, we will first note that we only care about the time from the last sent bit, and the
worst case ACK / packet size.

1

https://github.com/robomarvin1501/notes_networking


Figure 1: Timeout size

So we can see that
Tout ≥ 2Tprop + Tack + Tpt

Example 1. Let:

• Packet size: 2000 bit

• ACK/NACK size: 200 bit

• Transmission rate (BW): 10 Kbps

• Distance between stations: 1000 km

• Propagation speed: 2 · 108m/s

• Processing time (Tpt ): 0 sec

• What is the minimal timeout, needed for this protocol?

Solution. We will note that the propagation speed is

Tprop =
distance

propagation speed

=
106m

2 · 108m
s

= 5 · 10−3s

The ACK time is

Tack =
ACK size

Transmission rate

=
200bits

104 b
s

= 2 · 10−2s

So

Tprop = 5 · 10−3s

Tack = 2 · 10−2s

Tpt = 0

Tout ≥ 2Tprop + Tack + Tpt

= 2 · 5 · 10−3 + 2 · 10−2 + 0

= 3 · 10−2s

Let us now consider the goodput. Let us assume that we use the whole bandwidth, and on failure, the receiver
does not send NACK, but just ignores the packet. Packets /ACKs fail with probability

p =⇒ X ∼ Geo
(
(1− p)

2
)

The expected number of tries until success (i.e. all attempts except the last fail):

E [X] =
1

(1− p)
2

2



The goodput is the ratio of effective transmission time, and total transmission time. Let Tpacket be the transmission
time of a data packet. So:

Goodput = Tpacket(
1

(1−p)2
− 1

)
(Tpacket + Tout) + (Tpacket + 2Tprop + Tack + Tpt)

If Tout is set to the minimal value that we previously calculated Tout = 2Tprop + Tack + Tpt then

Goodput = Tpacket(
1

(1−p)2
− 1

)
(Tpacket + Tout)

=
Tpacket (1− p)

2

Tpacket + Tout

We will note that doing this for every packet is expensive for the goodput, neatly bringing us on to the next section.

4 Go Back N (GBN)
In Stop and Wait we waste time during the timeout period. We can use this time to send additional packets. We will
assume that the sender has a sliding window of size N . The sender will send N packets one after the other, and if it
reaches a timeout, then it resends from the last known ACK. The receiver only sends ACKs for the packets within the
sequence.

Sender: Window size of N packets, and send at most N unacknowledged packets. If a timeout occurs, resend all
packets that have been sent but not yet acknowledged. ACK (i) indicates that packets 1, 2 . . . , i have been received
correctly (meaning that it is cumulative). When an ACK is received, then the beginning of the window is moved to
the next unacknowledged sequence number.
Receiver: Has a window size of a single packet, and if it receives a packet with sequence number i correctly, and
in order (which is to say, that the last packet delivered to the upper layer has a sequence number i − 1), then send
ACK(i), and deliver the data to the layer above. Otherwise the packet is corrupted, or not in order, so discard it,
and send ACK for the most recently received in order packet.

The sender has a timer for each transmitted packet, which is started after sending the final bit of a packet.

Consider if we have a window size of 8, and use 3 bits to represent it. We can then desynchronise if all 8 packets
are received, but all 8 ACKs are lost, since the sender will return to the beginning of the window, but the receiver will
assume that this is new data. We can resolve this if for a window size of n, we use dlog2 (n)e+ 1 bits to represent it.

4.1 Questions
Given a network with 2 nodes, A and B, we assume:

• Node A only sends data to B, B only ACKs to A

• No limit on buffers or sequence numbers

• The packet transmission (Tpacket), propagation time (Tprop) and packet processing time (Tpt ) are constant

• ACKs are delivered without any errors and Tack = 0

• Tout is set to the minimal value that avoids unnecessary retransmissions

• Tout = 2Tprop + Tack + Tpt

• Window size is equal to Tout + 1

4.1.1 Question 1

We will change the protocol as follows:

• When node A detects a failure, it re-transmits the failed packet L times

• Node A activates the timeout only after the last packet was sent

• Node A will keep transmitting the L packets even if got an ACK for one of them

• Node B will ACK the first packet and ignore all duplicates

Complete the diagram when L = 2, Tprop = 2, Tpacket = 1, Tpt = 1, the transmissions of packet number 2 fail 3
times, and all other packets arrive successfully:

3



Sol. We will firstly compute Tout = 2Tprop + Tack + Tpt = 2 · 2 + 1+ 0 = 5. This results in a window size of 6. As
can be seen, we wind up with the following answer

4.1.2 Question 2

For a given L, assume that packets fail with probability p. What is the probability to succeed with exactly k retries,
where each retry consists of L packets?

Sol.

First try: p0 = 1− p (1)
First retry: p1 = p

(
1− pL

)
(2)

Second retry: p2 = p · pL
(
1− pL

)
(3)

k retries: pk = p ·
(
pL

)k−1 (
1− pL

)
(4)
(5)

4.1.3 Question 3

Assuming that Tpt = Tack = 0, and the receiver is ready to accept the packet, what is the expected time to successfully
transmit a packet?

Sol.

First try: t0 = Tpacket (6)
One retry: t1 = Tpacket + (Tout + L · Tpacket) (7)
k retries: tk = Tpacket + (Tout + L · Tpacket) · k (8)

(9)

4



The expected time is

tavg =

∞∑
k=0

tkpk

= Tpacket +

∞∑
k=1

(Tout + L · Tpacket) k · pk

= Tpacket + pp
(
1− pL

)
(Tout + L · Tpacket)

∞∑
k=1

k
(
pL

)k−1

∞∑
k=1

k
(
pL

)k−1
=

1

1− pL

∞∑
k=1

k
(
pL

)k−1 (
1− pL

)
=

1

(1− pL)
2

=⇒ tavg = Tpacket +
p (Tout + L · Tpacket)

1− pL

4.1.4 Question 4

What is the expected goodput of the protocol?
Sol. Let a =

Tout + Tpacket

Tpacket

Goodput = Tpacket

Tavg

=
Tpacket

Tpacket +
p(Tout+L·Tpacket)

1−pL

=

(
1− pL

)
Tpacket

(1− pL)Tpacket + p (Tout + L · Tpacket)

=

(
1− pL

)
Tpacket

(1− pL)Tpacket + p (Tout + Tpacket) + p · Tpacket (L− 1)

=
1− pL

1− pL +
p(Tout+Tpacket)

Tpacket
+ p (L− 1)

=
1− pL

1− pL + p · a+ p (L− 1)

=
Tpacket

Tavg

=
1− pL

1− pL + p (a+ L− 1)

In contrast, in GBN we have L = 1, therefore the goodput (under this question’s assumptions) is

GoodputGBN =
1− p

1− p+ pa

5 Selective Repeat
In GBN, we potentially retransmit many packets that were in fact received should a single packet fail. If packet 2
fails, but 3, 4, 5 all succeeded, we will still retransmit all of 3, 4, and 5, along with 2. Instead, we may retransmit
selectively, and only resend the packets that failed. However, this comes at the cost of the receiver needing to store
the window of messages, not just the transmitter. In the end, a minor cost.

Sender: Window size of N packets, which are sent one by one, in order. A timer for each packet is started after
the transmission of the last bit of each packet, and a timeout for packet i indicates retransmitting packet i. ACK (i)
indicates reception of packet i only. If an ACK is received for i, mark it as received. If this is the first packet of the
window, then shift the beginning of the window to the first unacknowledged packet.
Receiver: Stores a window size of N packets, and sends an ACK for every correctly received packet (even if it is not
in order) in the window. Out of order packets with a sequence number within the window range are buffered until
any missing packets with lower sequence numbers are received. When all missing packets are received, then deliver all
in order packets to the upper layer and move the beginning of the window to the next expected (in order) sequence
number.

We once again have the problem of number of bits / window size as we discussed earlier. For a window size N , we
need ≥ 2N sequence numbers, i.e. dlog2 2Ne bits.

5



Criteria Selective repeat Go back N
Bandwidth utilisation Only retransmits lost packets Might retransmit packets that

have already successfully ar-
rived

Window sizes Sender: N , Receiver: N Sender: N , Receiver: 1
Sequence numbers 2N N + 1
Out of order handling Track which packets were re-

ceived (out of order is possible)
No sorting, receiver only accepts
packets in order

Receiver storage Store packets until missing /
damaged packets are retrans-
mitted

No need to keep undamaged
packets, since the sender may
resend

Table 1:

5.1 Questions
5.1.1 Question 1

Assume an ideal SR protocol:

• Infinite sized windows on both ends

• Infinite bits for sequence numbers

• Infinite sized buffers on both ends

• ACKs do not fail and Tack is negligible

• Packets fail with probability p

What is the protocol’s goodput?

Goodput = Tpacket (1− p) + 0 · p
Tpacket

= 1− p

5.1.2 Question 2

A sender (A) and a receiver (B) works with S&W with the following modification: station A transmits a window of L
packets, starts a timer, and waits for all ACKs (for every packet in the transmitted window) before transmitting the
next window.
In case any of the packets are not ACKed then the entire window is considered failed and station A retransmits the
entire window (after the timeout)
If all packets are ACKed, station A will transmit the next window.

Tprop is given, Tpt, Tack are negligible. What is the optimal Tout? (optimal in the sense of avoiding unnecessary
retransmissions)

Sol. Tout = 2Tprop

From now, let us assume that Tout = 2Tprop, L = 4, Tprop = 2[unit]

5.1.3 Question 2

Draw the packets, and the ACKs transmission until packet 4 is successfully received, where packet 3 fails in its first
transmission, and all other packets in the window are successful (got ACKed).

Sol.

Figure 2: Solution

5.1.4 Question 3

What is the probability for an L sized window to fail?
Sol. p′ = 1− (1− p)

L.

6



5.1.5 Question 4

What is the goodput?
Sol.

η =
E [Effective sending time]

L · Tpacket + 2Tprop

=
Pr [Window failed] · 0 + Pr [Window succeeded] · L · Tpacket

L · Tpacket + 2Tprop

=
L · Tpacket (1− p)

L

L · Tpacket + 2Tprop

7


	Reliable Transport
	First attempt
	Stop and Wait
	Go Back N (GBN)
	Questions
	Question 1
	Question 2
	Question 3
	Question 4


	Selective Repeat
	Questions
	Question 1
	Question 2
	Question 2
	Question 3
	Question 4



